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Abstract 
 
Analytical and numerical studies on continuum models for the elastic-plastic behavior of uniformly periodic lattice materials under 

multi-axial loading are presented in this paper. This study firstly investigates the basic topology of unit cell structures for three different 
lattice materials with cubic symmetry. By homogenizing the mechanical properties of these materials within the unit volume space, the 
equivalent continuum models are obtained with the internal variables which result in the mechanical and geometrical characteristics of 
discrete truss members at the micro-scale such as structural packing, axial stiffness, and material density. Therefore, in this study, the 
strain hardening was applied to the material model of individual truss members in a valuable effort to explain the plastic behavior of the 
homogenized lattice material. The expansion of pressure-dependent stress surface at the macro-scale level is estimated by analytical pre-
dictions, which are derived from the equivalent continuum models. Analytical predictions show good agreements with existing results 
obtained by finite element (FE) analyses. 
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1. Introduction 

Truss-lattice structures with low relative density are manu-
factured from high strength alloys through a simple high press 
forming process. These structures are fabricated by packing 
bent nodes with an interwoven polynomial punched layer [1]. 
It is assumed that the robust welding is applied to nodal con-
nections. Lattice materials are widely used as the cores of 
sandwich plates since they present the opportunity to add su-
perior stiffness-to-weight effect to the sandwich plates [2, 3]. 
In addition, they have been used in multifunctional applica-
tions ranging from ultra lightweight materials to automotive 
and aerospace components, construction materials, furniture, 
and sporting tools, for all of which both lower fabrication cost 
and higher ultimate strength are essential requirements [4, 5]. 

The lattice materials are composed of a characteristic unit 
cell element that is in a uniform periodic replication. For this 
reason, this smallest unit cell element is taken as the represen-
tative volume element (RVE) which represents the mechanical 
performance and properties of the bulk lattice material. There 
have been a number of investigations into this relatively new 
material including effective elastic properties, multi-
functionality and multi-stress failure surface of unit cell struc-

tures [6-9]. The unit cell structures with the higher order of 
symmetry such as the cubic symmetry are considered in this 
study. 

Cubic-symmetric unit cells take advantage of the stable 
packing of successive layers by sharing identical volume frac-
tions with surrounding truss members. This packing system 
enables lattice materials to maximize the stiffness effect and 
lightweight effect within the limited volume space [10]. 

Deshpande et al. [2] investigated the effective properties of 
the unit cell of octet-truss materials. They assumed that struts 
are pin-jointed at all nodes so that the contribution from bend-
ing resistance to the total stiffness is negligible when com-
pared to that from stretching of the struts. They reported com-
bined analytical and finite element (FE) investigations of the 
perfectly elasto-plastic failures as well as collapse modes ow-
ing to elastic buckling. The predictions were compared with 
experimental observations from the test on an octet-truss. 
These periodic lattice materials, which are stretching domi-
nated, have been developed to supply high axial stiffness and 
strength as well as multi-functional weight efficient for their 
practical applications. 

Recent researches developed a general homogenization 
procedure for practical lattice structures [2, 11-13]. They have 
been involved with the continuum modeling of repetitive lat-
tice structures including micro-macro stress-strain relationship 
regarding force and displacement, discrete-filed method, 
small-strain homogenization technique, and energy equivalent 
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concept. The lattice material was viewed as a composite mate-
rial with elastic-plastic truss members embedded in an infinite 
soft matrix. Based on this assumption, the general finite-strain 
plasticity model was developed. 

In this study, the macroscopic continuum constitutive mod-
els are developed for predicting the mechanical behavior of 
the unit cell structures subjected to multi-axial loading in the 
plastic regime. The relative density, a key parameter in deter-
mining the effective strength of the unit cell structure, is 
evaluated from the volume fractions of individual truss mem-
bers. The elastic moduli under uni-axial states are investigated 
within a reasonable range of the relative density. On the basis 
of constitutive equations obtained, the macro-scale stress sur-
face is analytically determined by examining whether the 
stress state in micro-scale lattice truss members reaches the 
limit state of the micro-scale stress under multi-axial loading. 
The accuracy of these predicted stress surfaces is verified with 
the numerical experimental results obtained from finite ele-
ment (FE) analyses.  
 

2. Topological characteristics of unit cell structures 

The lattice materials are constructed by stacking unit cell 
elements face to face in perfect alignment in three dimensions. 
By repeating the prototype unit along the material’s principal 
axes, a regular structure of the lattice material can be obtained. 
The unit cell element is the unit component that still possesses 
all physical characteristics of the bulk lattice material [14, 15]. 
Therefore, one can consider a single unit cell in the numerical 
simulation as the representative element of the entire lattice 
material, assuming that the lattice material is infinitely matrix 
material [11, 12].  

To achieve the convenience of analysis, we introduce sub-
lattice elements. Sub-lattice elements are defined as the least 
sub-structure that composes the unit cell element and that 
represents the basic material property of the symmetry base-
lattice structure with only three truss members. The topologi-
cal geometries of sub-lattice elements and the longitudinal 
axes of truss members are shown in Fig. 1. They are classified 
as a cubic-lattice element (Fig. 1(a)), octet-lattice element (Fig. 
1(b)), and diagonal-lattice element (Fig. 1(c)) in this study. 

Three truss members have the length either L or 2L , the 
same rotational angle ( θ ) and nodal connectivity within the 
unit volume ( 3

unitV L= ). Therefore, strength and stiffness of 
its own truss member is uniform along the global axis.  

All component truss members are transformed from their 
local axis to the global (X, Y, Z) coordinate system with the 
unit vector ( )ka summarized in Table 1. The superscript k in-
dicates a truss member number. The global axes are replaced 
with a single subscript i=1, 2, and 3 in the vector notation such 
that X↔1, Y↔2, and Z↔3. The unit direction vector 

{ }1 2 3e e e=e  should be used to separate the common 
vector component ( )kα  as a scalar value from the unit vector 

( )ka  that the axis of the kth truss member is making with the 
local coordinate axes. This unit vector ( )ka can be obtained 
from ( ) ( ) ek kα= ⋅a , so the unit vector possesses three compo-
nents { }1 2 3

( ) ( ) ( ) ( )k k k kα α α=a . The common vector compo-
nents for the cubic-lattice element, octet-lattice element, and 
diagonal-lattice element are denoted by ( )cubα , ( )octα , and 

( )diaα , respectively. They are taken as the value of 
( ) 1.0cubα = , ( ) 2 2octα = , and ( ) 2 2diaα = . These com-

mon vector components are determined by the absolute value 
of the direct cosine between the longitudinal axis of each truss 
member and its closest-angled global coordinate axis 
( cosθα = ). 

All truss members in the cubic-lattice element (Fig. 1(a)) 
are placed at (L,0,0), (0,L,0), and (0,0,L) position with 

( ) 1.0cubα = . As a result, this topological system takes advan-
tage of the strong axial stiffness along the global coordinate 
axes X, Y, and Z. This cubic-lattice element is utilized to 
strengthen uni-directional stiffness. The longitudinal direction 
of octet-truss members ( , (0,L,0)→ (L,0,0)) is normal to 
that of diagonal-truss members ( , (0,0,0)→ (0,L,L)) at the 
same surface plane of the unit volume. However, the stiffness 
distributions due to axial responses along the global axes re-
main the same in octet-lattice elements and diagonal-lattice 
elements. These sub-lattice elements are stacked as the cubic 
symmetry base element, which results in the unit cell element 
(e.g. octet unit cell element). In other words, the unit cell ele-
ment is easily fabricated by periodically replicating these sub-
lattice elements with rotational mirror symmetry.  

In this study, three typical lattice materials with the cubic- 
 

 
                                       (a) Cubic-lattice element                (b) Octet-lattice element              (c) Diagonal-lattice element 
 
Fig. 1. Basic topolies of sub-lattice elements. 
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Table 1. Unit vectors and common vector components of truss ele-
ments within sub-lattice elements. 
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Fig. 2. Unit cell elements and their packing. 

 
symmetric unit cell elements are addressed. Their unit cell 
elements, global coordinates, and structural packing are pre-
sented in Fig. 2. Three unit cell elements such as the octet unit 
cell (Case A), strengthened diagonal unit cell (Case B), and 
strengthened octet unit cell (Case C) defined herein are se-
lected to investigate the mechanical behavior of the unit cell 
and the lattice material because these are the structures that are 
most often used in practice.  

Truss members, which are solid struts in the unit cell, have 
their mirror symmetric pair labelled “SE1” and “SE2” in Fig. 
3 (a). In fact, this symmetry in the lower scale results from the 
bulk lattice material in the higher symmetry. This geometric 
symmetry reduces 81 independent elastic constants (i.e.Cijkl; I, 
j, k, l=1…3) in the constitutive matrix to 3 (i.e. 1111C , 1122C , 
and 1212C ). As shown in Fig. 3(b), the octet unit cell (Case A) 
consists of eight tetrahedrons. Each tetrahedron component is 
replicated and packed with mirror planes or 90 degree rota-
tions at each axis (see Fig. 3(a)). All truss members on the 
mirror planes are equally distributed into their neighboured 
unit volume elements. They are also aligned with the same 
rotational angle on the mirror plane. Therefore, the mechanical  
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XX

Z

X

Y
SE2

SE2

SE1

SE1 SE2

MirrorMirror Mirr
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irr
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L
(b) Octet unit cell element

(c) Strengthened diagonal unit cell element

(d) Strengthened octet unit cell element(a) The general cubic symmetry unit cell structure  
 
Fig. 3. Typical unit cell structures with the cubic symmetry. 

 
properties of component truss members with respect to com-
pliance, stiffness, and volume fraction have a significant influ-
ence on the effective material model in the octet unit cell ele-
ment (see Fig. 3(b)). On the other hand, other two unit cell 
elements, Case B (Fig. 3(c)) and Case C (Fig. 3(d)), are 
strengthened by cubic-lattice elements, which possess truss 
members parallel to the principal axes. Owing to cubic-lattice 
elements, these two unit cell elements can produce the distinct 
uni-axial strength at the constitutive model. 

All truss members have the same cross section area 
( 2

oA πr= ) and the ratio of the radius of the truss member to 
the length of cubic unit volume space ( r L ) is identical in all 
three cases. The relative density of the unit cell element ρ∗ , 
which is defined as the ratio of the density of the lattice mate-
rial to the density of the solid material in the same amount of 
unit volume (i.e. sρ ρ ρ∗ = ), can be also expressed in terms of 
the ratio r L .The relative density of a unit cell element is 
used to represent a metric level for significant characterization 
of the mechanical properties of the lattice material. It was 
typically taken as the value of 0.1 ( r L 0.1= ) for generating 
structures with reasonable relative density [2, 8].  
 
3. Macroscopic models 

3.1 Volumetric homogenization  

To calculate the overall properties of a heterogeneous mate-
rial, the representative volume elements (RVE s) are used in 
the analysis. RVE is defined as a continuum element, which is 
a statistical ensemble of micro-scale objects surrounded by the 
continuous macro-scale media. RVE should contain the suffi-
ciently large number of micro-scale objects in order to repre-
sent a statistical sample of the continuum mechanical proper-
ties. In the periodic medium, RVE corresponds to the unit cell 
element. Two different scales exist: the structure is heteroge-
neous at the micro-scale level, while it is viewed homogene-
ous at the macro-scale level [16].  

The average stress Σ for the RVE defined in the global co-
ordinates system X is obtained by averaging the local stress σ 
in the local coordinate system x over the volume of the RVE 
[16],  
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V

1[ ] [ ] [ ; ] V[ ]
V

d= ∫Σ X σ x A x X x   (1) 

 
where A denotes the linear transformation operator from the 
local to global coordinates. When the local medium in the 
RVE is discrete (as truss members), the volume-averaging 
operation is simplified greatly. Note that this averaging opera-
tion is valid for any type of lattice structure regardless of its 
symmetry property [10]. 

The homogenization theory is applied to describe the rela-
tionship between micro-scale and macro-scale levels of the 
truss-lattice material. Every discrete solid truss member, de-
fined as the micro-scale medium in the unit cell element, has 
its own arbitrary orientation. To formulate the macro-scale 
continuum property, it is necessary to transform every indi-
vidual local orientation into the global coordinate system that 
is a reference coordinate system in the homogenization proce-
dure. The procedure of the homogenization is separated into 
the transformation ( (1) (1) (1)

11 1 1σ σ α α= ⋅ ) and average 
( (1)

11 unit 11(V V )σΣ = ) as shown in Fig. 4. The homogenization 
for one truss member under uni-axial loading in the lattice 
material is illustrated in this figure. In the unit volume space, 
the macro-scale uni-axial strain 11E  is defined as the applied 
uni-axial displacement 11∆ divided by the length L  
( 11 11E L= ∆ ) of the unit volume. When homogenized, the 
strength of every truss member is uniformly distributed in the 
unit volume space as a result of the volume average of the 
stress of local truss members [7].  

 
3.2 Effective constitutive models 

Suppose the RVE consists of K discrete truss members and 
only the axial stress is formed uniformly in the whole length 
of the members. Then, the average stress is 
 

ij
( ) ( )

ij ( ) ( )
1

( ) ( ) ( )
v ij

1

1Σ A ( L )
V

A

K
k k

k k
k
K

k k k

k

σ A

v σ

=

=

=

=

∑

∑
  (2) 

 
where ( )kσ , ( )L k  and ( )kA  are the axial stress and the length 
and cross section area of the kth truss. Here, the volume frac-
tion of the kth truss member is ( )

v unit( L ) / Vk
k kv A=  and unitV  

is the volume of the unit cell. In this case, it can be shown that 
the linear transformation operator ijA  is reduced to the prod-
uct of the vector components ( )

ia k  such as ( ) ( ) ( )
ij i jA a ak k k= ⋅ .  

The general macro-scale strain is defined as the applied dis-
placement load divided by the length of the square unit cell 
(L)  
 

ij
ijE

L
∆

=   (3) 

 
Now, the macro-scale strain in the global coordinates ( ijE ) 
and the local strain in the kth truss member ( ( )kε ) are related by 

( ) ( )
ij ijA Ek kε =   (4) 

 
or  
 

( ) 1 ( )
ij ijE A k kε−= .  (5) 

 
In Eq. (5), the property that ( )-1

ijA k  also results in a symmetric 
unitary second order tensor (so that ( ) 1 ( ) 1 ( )-1

ij i jA a ak k k− −= ⋅ ) whose 
inverse components are only either 2 1 2α = or 2 1α =  in the 
cubic symmetry lattice material, is used. As shown in Fig. 4, 
the local strain in the truss member may be evaluated by the 
product of the applied uni-axial strain in the global coordinates 
and the linear transformation operator, e.g. (1) (1)

11 11A Eε = . By 
the local stress-strain relationship given by 
 

( ) (k) ( )k k
sEσ ε= ,  (6) 

 
where ( )k

sE  is Young’s modulus of the kth truss member, the 
relationship between the local stress and the global strain is 
 

( ) ( ) ( )
kl klA Ek k k

sEσ =   (7) 
 
Substituting Eq. (7) into Eq. (2), the macroscopic constitutive 
relationship ( =Σ CE ) is obtained  
 

( ) ( ) ( ) ( )
ij v ij kl kl

1
Σ A A E

K
k k k k

s
k

v E
=

= ∑   (8) 

 
Consequently, the macroscopic stiffness tensor C  for the 
unit cell of a general lattice material is expressed as 
 

( )

( ) ( ) ( ) ( )
ijkl v ij kl

1

( ) ( ) ( ) ( ) ( ) ( )
v i j k l

1

C A A

a a a a

K
k k k k

s
k

K
k k k k k k

s
k

E v

E v

=

=

=

= ⋅ ⋅ ⋅

∑

∑
 .   (9) 

 
Note that the macroscopic stiffness tensor is in the forth order 
tensor form [10, 17] 

The continuum model of the open-cell foam is also based 
on the characteristic unit cell extracted from the open-cell 
cellular solids with randomly orientated struts. Moreover, the 
research concepts and approaches related to the open-cell 
foam structures have been accompanied with those related to 
the truss-lattice structures, in terms of interesting macro-micro 
scales, mechanical properties, constitutive model formation, 
and yield functions [18]. The bending mechanism can domi-
nate the finite deformations of the randomly oriented struts 
within micro-cellular solid structures. By contrast, the contri-
butions of the overall bending stiffness of the truss members 
periodically aligned are considered to be negligible, when 
compared with those of the axial stiffness [2, 11, 14]. Like-
wise, the plastic deformation at the connected nodes, shearing 
and torsion effect of individual truss members are not consid-
ered in the constitutive model. Using the tensor notation and 
subscripts (XX→11, YY→22, and ZZ→33 for axial direction 
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XY→12, XZ→13 and YZ→23 for shear direction), the mac-
roscopic stress Σ  and strain E are written in vector forms  
 

( ) T

11 22 33 12 13 23= Σ Σ Σ Σ Σ ΣΣ ,  (10) 

( ) T

11 22 33 12 13 23= Ε Ε Ε Ε Ε ΕE .   (11) 
 
Macro-scale shear strains are the total measurement of shear 
strain called the engineering strain in the surface plane 
(e.g. 12 21EΕ = , 13 31EΕ = , and 23 32EΕ = ). Then, the macro-
scopic constitutive relationship written in the compact matrix 
form is  
 

11 111111 1122 1122

22 221122 1111 1122
2

33 331122 1122 1111
2

12 121212

13 131212

23 231212

Σ ΕC C C 0 0 0
Σ ΕC C C 0 0 0
Σ ΕC C C 0 0 0
Σ Ε0 0 0 C 0 02 2
Σ Ε0 0 0 0 C 0
Σ Ε0 0 0 0 0 C

sE r
L

π

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟

=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

 (12) 

 
where the non-dimensional parameters. 1111C , 1122C , and 

1212C  are given as follows:  
For the octet unit cell (Case A); 

 

1111C 2=   (13a) 

1122C 1=   (13b) 

1212C 1=   (13c) 
 

For the strengthened diagonal unit cell (Case B); 
 

( )1111C 2 2 2= +   (14a) 

1122C 1 2=   (14b) 

1212C 1 2=   (14c) 
 

For the strengthened octet unit cell (Case C); 
 

1111C 2 2= +   (15a) 

1122C 1=   (15b) 

1212C 1=   (15c) 
 

Note that the cross sectional area and Young’s modulus of 
the solid truss member are identical in all truss members. Un-
der the assumption of small deformation, if Young’s modulus 
is replaced with a tangent modulus, this relationship will hold 
even when truss members undergo plastic deformation. The 
micro-scale elastic constitutive model is considered as the 
continuum system because component elastic constants pos-
sess the volume fractions of every single truss member. It is 
interesting to note that even though the stress state in every 
truss member is axial (tension or compression), shear stress 
and strain are induced in the equivalent continuum and the 
macroscopic constitutive matrix possesses nonzero shear stiff-
ness ( 1212C 0≠ ). 

11σ
(1)
1α

11
unit

)1(

11 V
V σ=Σ

]E[ 1111Σ

(a) Transformation (b) Average

(1)
1

(1)
1

)1(
11 αασσ ⋅=

][ )1()1( εσ
(1)a

11∆

L

  
Fig. 4. Decomposition of homogenization procedures for the lattice 
materials. 
 
3.3 The relative density 

As mentioned above, the relative density ρ∗  has a signifi-
cant meaning and is a very useful parameter in interpreting the 
mechanically effective property of the lattice materials and 
estimating their lightweight effect. The relative density is de-
fined as the ratio of the total volume that is occupied by all 
truss members in the unit cell to the volume of the unit cell 
element It should be noted that the relative density ρ∗  in-
cludes the volume fractions ( vν ) of individual truss members 
and the macroscopic stiffness ( T

vsE v=∑C A A ) [10, 17]. 
Thus, it is the sum of the volume fraction of all composing 
members.  
 

( ) 1111 1122
v

1

3C 6CK
k

k sE
ρ ν∗

=

+
= =∑    (16a) 

 
Thus, the specific values of relative densities are as follows: 
Octet unit cell element -Case A; 
 

2 23 2πr Lρ∗ =    (16b) 
 
Strengthened diagonal unit cell element - Case B;  
 

( ) 2 26 2 3 πr 4Lρ∗ = +   (16c) 
 
Strengthened octet unit cell element - Case C;  
 

( ) 2 23 2 3 πr Lρ∗ = +   (16d) 

 
The relative density is a useful parameter in optimizing the 

effective elastic moduli (typ. *Ε and *G ) of a lattice material 
subjected to the weight constraint. For example, in Fig. 5, the 
effective elastic moduli for three unit cell elements are shown 
for increasing the relative density, which is proportional 
to ( )2r L . With the increase of the relative density, relative 
elastic modulus ratios *

sEΕ and *G sE  increase rapidly. 
Even though r L  is the same in three unit cells, the relative 
densities ρ∗  are quite different due to the different packing 
systems as shown in Fig. 3. When r L 0.1= , the strengthened 
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octet unit cell element has the highest relative den-
sity, 0.227ρ∗ = . The highest strength among three unit cell 
element is also expected at this unit cell element. It is interest-
ing to note that the shear modulus ratio *G sE in octet unit 
cell element (Case A) and strengthened octet unit cell element 
(Case C) is identical (see Fig. 5(b)) in spite of the different 
relative density. This is because the bending response, which 
occurs at the cubic-lattice member due to the global shear 
force, does not make any contribution to the formation of the 
effective elastic shear modulus. It is associated with the 
stretching response at the truss members.  

 
3.4 Small stress-strain formulation with micro-macro trans-

formation  

Since the continuum properties of the unit cell structures are 
influenced by the mechanical properties of component truss 
members, the stress-strain relationship between micro-scale 
and macro-scale is predicted from the effective constitutive 
relationship ( =Σ CE ). 

Here, we briefly examine the relationships between macro-
scale and micro-scale strain for truss members and between 
the macro-scale stress and the macro-scale strain. The small-
strain formulation for one dimensional truss member in the 
micro-scale level is established by the superposition of trans-
formed total applied stains in the macro-scale level. For the 
verification of this strain formulation, two dimensional truss 
lattice materials (diagonal- and octet-truss members) under 
multi-axial loading ( 11E + 22E  and 22E + 12E ) are presented in 
Fig. 6. Macro-scale strains under the displacement loading 
control are applied to each nodal point in the unit cell element. 
Recall that the relation between the unit vectors ( )ka and the 
common vector components ( )kα  are summarized in Table 1. 

We note that overall member strain as well as local stress 
continuously increases at truss members subjected to either 
out-of-perpendicular or parallel stretching [19, 20]. These 
truss members are denoted by “||” on the red-colored struts 
(see Fig. 6). Those truss members aligned with normal direc-
tion to the applied strain ijE  are deformed mostly by the 
plastic hinge due to the bending effect. For multi-loading 

cases, the micro-scale strain is obtained by the sum of applied 
strains, with the coordinate transformed. The macro-micro 
strain relationship is defined by: 
For multi-axial loading 11E + 22E  (Fig. 6(a)); 
 

(1) (1) (1) ( ) 2
11 11 22 22 11 22A E A E ( ) (E )octε α= + = + Ε   (17a) 

(2) (2) (2) ( ) 2
11 11 22 22 11 22A E A E ( ) (E )octε α= + = + Ε   (17b) 

(3) (3) (3) ( ) 2
11 11 22 22 22A E A E ( ) (E )cubε α= + =   (17c) 

(4) (4) (4) ( ) 2
11 11 22 22 11A E A E ( ) (E )cubε α= + =   (17d) 

(5) (5) (5) ( ) 2
11 11 22 22 11A E A E ( ) (E )cubε α= + =   (17e) 

 
For multi-axial loading 22E + 12E  (Fig. 6(b)); 
 

(1) (1) (1) ( ) 2
22 22 12 12 22 12A E A E ( ) ( )octε α= + = Ε − Ε   (18a) 

(2) (2) (2) ( ) 2
22 22 12 12 22 12A E A E ( ) ( )octε α= + = Ε + Ε   (18b) 

(3) (3) ( ) 2
22 22 22A E ( ) (E )cubε α= =   (18c) 

(4) (4)
22 22A E 0ε = =    (18d) 

(5) (5)
22 22A E 0ε = =   (18e) 

 
The localized stress of the truss member is formulated by 

the 1D stress-strain constitutive function for the solid basis 
truss model such as ( ) ( )[ ]k kσ σ ε= . By using the stress aver-
age (Eq. (2)) and macro-micro strain relationships (Eq. (4)), 
uni-axial stresses at the macro-scale level are derived as fol-
lows: 
For uni-axial loading 22E ; 
 

( ct) ( ) 2 ( ) 2
22 v 22

( ub) ( ) 2 ( ) 2
v 22

Σ 2 ( ) [( ) E ]

( ) [( ) E ]

o oct oct

c cub cub

ν α σ α

ν α σ α

=

+
  (19) 

 
For uni-axial loading 12E ; 
 

( ct) ( ) 2 ( ) 2
12 v 12

( ct) ( ) 2 ( ) 2
v 12

Σ ( ) [( ) (E )]

( ) [( ) ( E )]

o oct oct

o oct oct

ν α σ α

ν α σ α

=

− −
  (20) 

 
In multi-axial cases, two dimensional macro-scale plane stress 
components such as 11Σ  and 22Σ  are generated in terms of 
the applied loading strains, e.g. 11E  and 22E . One dimen-
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Fig. 5. Comparisons of elastic moduli for the unit cells with cubic symmetry. 
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sional micro-scale strain of the truss member is simultane-
ously affected by applied strain loads such that 

( ) ( ) ( )
11 11 22 22A E A Ek k kε = + . As a result, the strength contribution 

from one dimensional truss member subjected to stretching is 
also simultaneously distributed into loading directions. If mi-
cro-scale strain is fixed to the certain level of the strain value 
such as ( ) ( ) ( )

11 11 22 22A E A Ek k k oε ε= + = , the sum of macro-scale 
stress components, 11Σ  and 22Σ , is constant. Therefore, the 
stress functions on the 2D surface plane under multi-axial 
loads are formulated as: 
For multi-axial loading 11E + 22E  (Fig. 6(a)); 
 

( ct) ( ) 2 ( ) 2
11 22 v 11 22

( ub) ( ) 2 ( ) 2
v 11

( ub) ( ) 2 ( ) 2
v 22

Σ 2 ( ) [( ) (E E )]

( ) [( ) E ]

( ) [( ) E ]

o oct oct

c cub cub

c cub cub

ν α σ α

ν α σ α

ν α σ α

+ Σ = +

+

+

  (21) 

 
For multi-axial loading 22E + 12E  (Fig. 6(b)); 
 

( ct) ( ) 2 ( ) 2
22 12 v 22 12

( ct) ( ) 2 ( ) 2
v 22

( ct) ( ) 2 ( ) 2
v 12

( ub) ( ) 2 ( ) 2
v 22

Σ ( ) [( ) (E E )]

( ) [( ) (E )]

- ( ) [( ) ( E )]

( ) [( ) E ]

o oct oct

o oct oct

o oct oct

c cub cub

ν α σ α

ν α σ α

ν α σ α

ν α σ α

+ Σ = +

+

−

+

  (22) 

 
In order to derive uni-axial stress from Eqs. (21) and (22), one 
of the applied macro-scale strains should be set as zero. For 
instance, if 11E  is zero in Eq. (21), this stress function re-
duces to the uni-axial stress case as shown in Eq. (19).  

Finally, the micro-scale stress states of the component truss 
member are directly joined to the macro-scale stress associ-
ated with its transformation and volume fraction 
( vσν=∑Σ A ). Thus, macro-scale stress surface functions are 

applied to examine the stress state of truss members, which 
includes plastic stress as well as elastic stress.  

The plastic flow rule is also satisfied at the macro-scale 

level. We also obtain the plastic strain using the linear combi-
nation of the transformation vector  
 

P ( )-1 ( )
ij ij PE A εk k= .  (23) 

 
The total strain consists of the sum of the elastic strain and 
plastic strain, i.e.  
 

= +E pΕ Ε E .  (24) 
 

The elastic stress-strain relationship at the macro-scale level 
is formulated by using the macro-scale plastic strain PE  [21] 
as follows: 
 

( )= − PΣ C E E   (25) 
 
Finally, we obtain the constitutive equations as the tensorial 
form  
 

( ) P
ij ijkl kl kl

1

( ) ( ) ( ) P
V ij kl kl kl

1

C (E E )

A A (E E )

n
k

k

n
k k k

s
k

Eν

=

=

Σ = −

= −

∑

∑
.  (26) 

 
In the next section, (1) the small-strain formulation, (2) ana-

lytical stress function, and (3) stress-stain relationship at the 
macro-scale level presented in this study will be verified with 
the numerical experiment performed by the FE program [22].  
 

4. Numerical calculations and discussion 

4.1 FE models and calculations 

The material property models of the solid-basis truss mem-
bers are summarized in Fig. 7. A previous study of lattice 
materials [2, 14, 23] accepted the perfectly elasto-plastic  

 
                                          (a) Multi-axial loading case (E11+E22)                              (b) Multi-axial loading case (E22+E12) 
 
Fig. 6. Macro-micro strain formation of 2D truss-lattice materials under multi-axial loading. 
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Fig. 7. Stress-strain relationships at the microscopic level. 
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Fig. 8. The performance levels of micro-scale stress for the plastic 
models. 

 
model. The mechanism-based multi-surface plastic models 
under the use of this material model were developed to repre-
sent the complex behavior of lattice solids. However, the exact 
expression to simulate the plastic behavior of these materials 
was restricted due to the approximate material models used for 
discrete truss members.  

Numerical tests were performed by using nonlinear finite 
element (FE) program ABAQUS [22]. The material property 
of LM 25 aluminum (Blue dotted line shown in Fig. 7) meas-
ured by the uni-axial pull test was assigned with FE models 
for unit cells. The behavior of LM 25 was simulated by the 
Ramberg-Osgood model (Red dotted line shown in Fig. 7) in 
order to apply the accurate material model to analytical pre-
dictions for the macro-scale stress surface. The stress-strain 
constitutive law for the truss member at the micro-scale level 
was employed in the analytical predictions as follows: 

Ramberg-Osgood model;  
 

n

s

s s sE E
σ ασ σε

σ
⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

  (27)  

 
where /s sEσ indicates the elastic strain and /s sEασ  indi-
cates the yield offset typically taken as the value of 0.002. The 
power coefficient n  was assumed to be 8.9. The elastic  

 
 
Fig. 9. FE modeling for unit cells (Top) and exaggerated deformation 
(Bottom). 
 
modulus sE  and the ultimate stress uσ  were taken equal to 
70 GPa and 170 MPa, respectively.  

The plastic domain of the yield stress surface at the macro-
scale level was investigated through the analytical predictions 
and FE test results at the stress performance level. The stress 
performance level shown in Fig. 8 consists of the yield point 
( 86yσ = MPa), hardening point ( 140oσ = MPa), and ultimate 
point ( 170uσ = MPa) for the micro-scale stress of the truss 
members. During the loading test performed on FE models, 
the axial stresses denoted by “S11” at the ABAQUS program 
were measured by using the field out-put commend at all time 
steps [22].  

In the FE models for cubic-symmetric unit cells, each truss 
member having a cylindrical shape was modeled by the quad-
ratic beam element (B32 element in the ABAQUS program). 
The cross section and material property of truss members 
were assigned into this element. For the purpose of avoiding 
the rigid body motion and rotation, some edge points at the 
end tips of structures were constrained. FE models and exag-
gerate deformations are illustrated in Fig. 9. The uniform 
loads based on the displacement control were applied to high-
lighted nodal points in red at the same surface. Multi-axial 
loads with the same loading strain rates (e.g. ii jj/ 1Ε Ε =  and 

ij ii/ 1Ε Ε = ) as well as with uni-axial loads (e.g. ii jj/ 0Ε Ε = or 
∞ and ij ii/ 0Ε Ε = or ∞ ) were applied to FE models. The 
macro-scale stresses were obtained by the constitutive rela-
tionship (see Eqs. 12 and 43) after FE tests.  

The values of the applied forces were automatically calcu-
lated by using the history out-put commend in the ABAQUS 
program. For the small-strain formulation, the geometric line-
arity or first order analysis was applied during FE tests. The 
stress of the cylindrical strut and the strain of the unit cell were 
obtained by these numerical tests. The macro-scale stresses 
were computed by substituting these strains at the specific 
micro-scale stress level into the constitutive equations. 
 
4.2 Plastic stress surface 

The analytical prediction for the macro-scale stress surface 
was derived by the macro-scale and micro-scale stress rela-
tionship shown in Eq. (2). Recalling Sec. (3.4) allows us to 
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formulate the analytical stress surface. The applied macro-
scale strain on the global coordination is rotated into the mi-
cro-scale one with the linear transformation operator (refer to 
Eq. (4)). Within the small-strain formulation, the micro-scale 
strain ( )kε is predicted from the applied macro-scale strain 
Ε using the geometric linear transformation due to the unit 
vector a . Similarly, the stress state of the truss member is 
also calculated by using the stress-strain relationship in the 
micro-scale level (see Fig. 7). The analytical predictions to 
estimate the macro-scale stress state Σ  were denoted by the 
micro-scale stress ( )kσ  as the internal variable. The extension 
of the stress surface due to the plastic deformation of the truss 
members are investigated in this section, as compared analyti-
cal predictions with FE test results at the performance level of 
micro-scale stress. It is also shown that the relative density can 
be obtained by the summation of uni-axial stresses derived 
from the analytical predictions.  

 
4.2.1 Plastic stress surface for the octet unit cell (Case A 

Model)  
For the octet unit cell (Case A), all truss members were 

aligned with the common unit vector component 
( ( ) 2 2octα = ). Thereby, the truss members on the same 
stress plane surface include the same strain or strain rate. In 
addition, regular stress-shape modes occurred at the surface of 
the unit cell element under the multi-axial loads. The analyti-
cal predictions at each performance stress level (i.e. yield, 
hardening, and ultimate state) were derived to determine the 
analytical stress function in the macro-scale stress surface 

Basic equation: ( ) ( )
ii jj vΣ Σ 2 oct octν σ+ =  

(ii-jj stress surface, e.g. ( 11 22,Σ Σ )) 
( )

ii ij vΣ 2 Σ 2 octν σ+ =   

(ii-ij stress surface e.g. ( 11 12,Σ Σ )),  (28a) 
 

where micro-scale strain and stress of the truss member in the 
octet unit cell element ( ( )octε and (oct)σ ) are substituted into  
 

1D yield state: (oct)
yε ε=  and ( ) [ ]oct

yσ σ ε=   (28b) 

1D stain hardening state: (oct)
oε ε=  and ( ) [ ]oct

oσ σ ε=  (28c) 

1D ultimate state: (oct)
uε ε=  and ( ) [ ]oct

uσ σ ε=   (28d) 
 
according to the micro-scale stress state. Constitutive equa-
tions for an 1D truss member (simulated by the Ramberg-
Osgood model) were assigned into the analytical stress func-
tion. The general volume fraction for each truss member em-
bedded in the infinitive unit cell volume is given by the equa-
tion 
 

2
o

v
unit

2A L 2π r
2V 2 L

ν ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

.  (29) 

 
The relative density ρ∗  was taken as 0.133. 

Comparisons between the analytical predictions and FE test 

results for the octet unit cell element and various stress-shape 
modes are illustrated in Fig. 10. The macro-scale stress Σ  is 
normalized by the yield stress for the solid basis material yσ . 
Mises stress-plots during static analyses, which occur with 
continuous displacement-load increments, are anchored 
around the stress surface. The uni-axial stresses are located on 
the interceptions of the stress surface, and stress surface are 
enclosed by interpolating two uni-axial stress points. The truss 
members with the performance stress levels in the micro-scale 
(see Fig. 8) are denoted by “||” on the red contour of Mises 
stress plots. As increasing applied strain loading, micro-scale 
strain also increases at these truss members. The stress-shape 
modes determined by these truss members are dependent on 
the loading combinations such as tension-tension (← →) and 
compression-compression (→ ←). As shown in Fig. 10, the 
identical stress-shape modes exist between completely oppo-
site load combinations (e.g. compression-compression (C-C) 
vs. tension-tension (T-T)). The stress surfaces are extended as 
increasing the plastic deformation of the truss members with 
strain hardening effect. It is noted from Fig. 10 that all results 
show good agreements between FE test results and analytical 
predictions.  

To discuss the relative density of the lattice material ρ∗ , the 
hydrostatic stress was introduced to the stress surface. The 
macro-scale stress function in the 3D domain and the failure 
state of the unit cell element subjected to the hydrostatic pres-
sure are illustrated in Fig. 11. All truss members fail simulta-
neously under the hydrostatic pressure. All interpolated lines 
from the interception on the macro-scale uni-axial stress inter-
sect in the hydrostatic pressure points, H1 (under tensile pres-
sure) and H2 (under compression pressure). All macro-scale 
uni-axial stresses 11Σ , 22Σ , and 33Σ  include the volume frac-
tion of the individual truss member ( )k

vν . Therefore, we can 
calculate the relative density at the state of the hydrostatic 
pressure by summation of all uni-axial stress components as 
follow 
 

2
11 22 33

( )

(Σ ) r3 3 2π
Loctρ

σ
∗ + Σ + Σ ⎛ ⎞= = ⎜ ⎟

⎝ ⎠
.  (30) 

 
This relative density is identical to Eq. (16b) from constitutive 
equations.  

 
4.2.2 Plastic stress surface for the strengthened diagonal 

unit cell (Case B Model)  
The strengthened diagonal unit cell element (Case B) con-

sists of two different sub-lattice elements, the diagonal-lattice 
element and the cubic-lattice element, as shown in Fig. 3(c). 
Thus, two different unit direction vectors exist in this type of 
unit cell structure. The truss members in the cubic-lattice ele-
ment were transformed with the unit direction vectors parallel 
to the global axes for the axial loads ( ( ) 1cubα = ). This struc-
tural arrangement for truss members provides the principal 
axial stiffness to the constitutive equations. The axial strength 
is significantly upgraded due to the cubic-lattice members.  
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Fig. 10. Comparison between FE test results (Dash-lines) and analyti-
cal predictions (Solid-lines) for the extension of the stress surface 
according to the performance stress levels based on the micro-scale 
stress (Octet unit cell element). 

 
However, strut members parallel to the axial loads are suscep-
tible to the plastic failure because of the fast strain rate. In 
other words, truss members in the cubic-lattice element pos-
sess faster strain flow rate than those in the diagonal-lattice 
element. The relationships between micro-scale and macro-
scale strains are summarized by the following: 

Truss members in the cubic-lattice element;  
 

ij
( ) ( )

ijA Ecub cubε =    (31a) 
 

Truss members in the diagonal-lattice element;  
 

ij
( ) ( )

ijA Edia diaε = .  (31b) 
 
The strain for truss members in the cubic unit cell element is 
simplified by substituting Eq. (31b) into Eq. (31a) as follows: 
 

2( ) ( )
ij ( )
( ) ( )
ij

A
A

cub cub
(cub) (dia) dia

dia diaε ε α ε
α

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
   (32) 

 
The analytical predictions at each performance stress level 

were derived to determine the analytical stress function in the 
macro-scale stress surface as follows 

Σ11

Σ22

Σ33

H1

H2

H1

H2

Failed Lattice 
Member

 
 
Fig. 11. Failure states at the octet unit cell under the hydro-static pres-
sure. 

 
Basic equation:  

( ) ( ) ( ) ( )
ii jj v vΣ Σ dia dia cub cubν σ ν σ+ = +  

(ii-jj stress surface) 
2 2

ijii
( ) ( ) ( ) ( ) ( ) ( )
v v v

2
1dia dia cub cub dia diaν σ ν σ ν σ

Σ⎛ ⎞ ⎛ ⎞Σ
+ =⎜ ⎟ ⎜ ⎟

+⎝ ⎠ ⎝ ⎠
  

(ii-ij stress surface).  (33a) 
 

Internal variables from both component sub-lattice elements 
such as micro-scale stress and volume fraction are found in the 
analytical prediction. The bending effect happening at the 
cubic-lattice member due to the shear force was negligible in 
comparison with the stretching effect. As a result, the macro-
scale stress function in ii-ij surface (e.g. ( 11 12,Σ Σ )), was for-
mulated as the elliptical form. Using the constitutive equation 
function for the 1D truss member ( ( ) ( )σ σ[ ]k kε= ), the micro-
scale stress-strain relationships for both diagonal-truss mem-
bers ( ( )diaε and ( )diaσ ) and cubic-truss members ( ( )cubε and 

( )cubσ ) are converted into 
 

1D Yield State: (dia)
yε ε= , ( ) [ ]dia

yσ σ ε= ,  

and ( ) ( ) ( ) 2( )cub cub dia
yσ σ α α ε⎡ ⎤= ⎣ ⎦   (33b) 

1D Strain Hardening: (dia)
oε ε= , ( ) [ ]dia

oσ σ ε= ,  

and ( ) ( ) ( ) 2( )cub cub dia
oσ σ α α ε⎡ ⎤= ⎣ ⎦    (33c) 

1D Ultimate State: (dia)
uε ε= , ( ) [ ]dia

uσ σ ε= ,  

and ( ) ( ) ( ) 2( )cub cub dia
uσ σ α α ε⎡ ⎤= ⎣ ⎦ .  (33d) 

 
The general volume fractions for each truss member are given 
to below 
 

2
( ) o
v

unit

2A L 2π r
2V 2 L

diaν ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

  (34a) 

2
( ) o
v

unit

A L r
4V 4 L

cub πν ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

.  (34b) 

 
Comparison between the analytical predictions and FE test 
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results is shown in Fig. 12 for 0.090ρ∗ = . The stress-shape 
modes under the combination of applied loads are also illus-
trated in the plan view of the unit cell element. Similar to the 
octet unit cell, the relative density is computed at the state of 
the hydrostatic pressure 
 

2 23 2 r 3 rπ
2 L 4 L

ρ π∗ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.  (35) 

 
This relative density is also identical to Eq. (16c). 

 
4.2.3 Plastic stress surface for the strengthened octet unit 

cell (Case C Model)  
The strengthened octet unit cell element (Case C) consists 

of an octet unit cell element and cubic-lattice elements as 
shown in Fig. 3(d). The truss members in the octet unit cell 
element were aligned with the same transformation angle to 
the axes. Two different transformation angles, which are in-
clined ( ( ) 2 2octα = ) or parallel ( ( ) 1cubα = ) to the axes, exist 
in this type of unit cell element. Similar to the strengthened 
diagonal unit cell element (Case B), the strain rates of the truss 

 

 
(a) Plastic surface is the axial-axial (ii-jj) space for diagonally strength-
ened cubic unit cell material 
 

 
(b) Plastic surface in the axial-shear (ii-jj) space for diagonally 
strengthened cubic unit cell material 
 
Fig. 12. Comparison between FE test results (Dash-lines) and analyti-
cal predictions (Solid-lines) for the extension of the stress surface 
extension according to the performance stress levels based on the mi-
cro-scale stress (Strengthened diagonal unit cell element). 

members in the cubic-lattice elements flow more quickly in 
comparison with those of the truss members in the octet unit 
cell element. As a result, the first yield yσ or the first ultimate 
state uσ  generally occurs at truss members in the cubic-
lattice elements due to the fast strain rates. The relationships 
between micro-scale and macro-scale strains are defined by 
Truss members in the cubic-lattice element:  
 

( ) ( )
ij ijε A Ecub cub=   (36a) 

 
Truss members in the octet-lattice element: 
 

( ) ( )
ij ijA Eoct octε = .  (36b) 

 
The strain of the truss members in the cubic-lattice elements 
( (cub)ε ) can be converted into  
 

2( ) ( )
ij ( )
(oct) ( )
ij

A
A

cub cub
(cub) (oct) oct

octε ε α ε
α

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
.  (37) 

 

 
(a) Plastic surface is the axial-axial (ii-jj) space for strengthened octet-
cubic unit cell material 
 

 
(b) Plastic surface in the axial-shear (ii-jj) space for strengthened octet 
unit cell material 
 
Fig. 13. Comparison between FE test results (Dash-lines) and analyti-
cal predictions (Solid-lines) for the extension of the stress surface 
according to the performance stress levels based on the micro-scale 
stress (Strengthened octet unit cell element). 
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The analytical predictions at each performance stress level 
were derived by 
Basic equation:  

 
( ) ( ) ( ) ( )

ii jj v vΣ Σ 2 4oct oct cub cubν σ ν σ+ = +  

(ii-jj stress surface) 
2 2

( ) ( ) ( ) ( ) ( ) ( )
v v v

1
2 4

jjii
oct oct cub cub oct octν σ ν σ ν σ

Σ⎛ ⎞ ⎛ ⎞Σ
+ =⎜ ⎟ ⎜ ⎟

+⎝ ⎠ ⎝ ⎠
  

(ii-ij stress surface).  (38a) 
 

Micro-scale strain-stress relationships for both octet-truss 
members ( ( )ε oct and ( )octσ ) and cubic- truss members 
( ( )ε cub and ( )cubσ ) are converted into  
 

1D Yield State: (oct)
yε ε= , ( ) [ ]oct

yσ σ ε= ,  

and ( ) ( ) ( ) 2( )cub cub oct
yσ σ α α ε⎡ ⎤= ⎣ ⎦    (38b) 

1D Strain Hardening: (oct)
oε ε= , ( ) [ ]oct

oσ σ ε= ,  

and ( ) ( ) ( ) 2( )cub cub oct
oσ σ α α ε⎡ ⎤= ⎣ ⎦    (38c) 

1D Ultimate State: (oct)
uε ε= , ( ) [ ]oct

uσ σ ε= ,  

and ( ) ( ) ( ) 2( )cub cub oct
uσ σ α α ε⎡ ⎤= ⎣ ⎦  .  (38d) 

 
The general volume fractions for octet- and cubic-truss mem-
bers are as follows 

 
2

( ct) o
v

unit

2A L 2π r
2V 2 L

oν ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

  (39a) 

2
( ) o
v

unit

A L r
4V 4 L

cub πν ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

.    (39b) 

 
The volume fraction of the octet-truss member is identical to 
that of the diagonal-truss member shown in Eq. (34a). Simi-
larly, the relative density of this unit cell element is calculated 
as follows 
 

2 2r r3 2π 3
L L

ρ π∗ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.  (40) 

 
Comparison between the analytical predictions and FE test 

results and various stress-shape modes are illustrated in Fig. 
13 for 0.227ρ∗ = . A couple of stress-shape modes also exist 
between opposite-load combinations on the macro-scale stress 
surface (compression-compression (C-C) vs. tension-tension 
(T-T)). This unit cell element is relatively denser than other 
two unit cell elements within the unit volume space. Therefore, 
the strengthened octet unit cell element can hold the largest 
envelop of the stress surface among three unit cell elements. 
So, we have ii jjΣ Σ 0.151y yσ σ= = at the ultimate stress 
surface, when 0.227ρ∗ = . Good agreements in the stress 
plots confirm the accuracy and adequacy of the analytical 
predictions for the macro-scale stress surface.  

 
5. Concluding summary 

Analytical predictions and FE tests are performed to under-
stand the effective mechanical properties and behaviors of the 
unit cells with cubic symmetry beyond the elastic regime. The 
packing characteristic, relative density, stiffness contribution, 
and component unit cell elements are analyzed for tailoring 
the elastic constant stiffness tensor in the equivalent contin-
uum model. The local stresses in the truss members (at the 
micro-scale level) are homogenized in the unit volume space 
considering the volume fractions of discrete truss members. In 
such a homogenization process, the relationships between 
micro-scale and micro-scale variables are established.  

The continuum-based plasticity models for the cubic-
symmetric lattice materials subjected to the multi-axial loads 
are also investigated through the analytical and FE studies. 
The analytical expressions that determine the macro-scale 
stress surface are given in terms of the local stresses in the 
discrete truss members. The strain hardening material model 
was used in the plastic formulation at the micro-scale level. As 
increasing the strain of truss members, the macro-scale stress 
surfaces show the expansion due to the hardening material 
effect of the internal truss members. Finally, the adequacy and 
propriety of analytical predictions are clearly verified through 
comparisons together with the results of FE analyses and the 
theoretical calculations of relative densities.  
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